Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ground-Based and Airborne Instrumentation for Astronomy VIII 2020 ; 11447, 2020.
Article in English | Scopus | ID: covidwho-1270869

ABSTRACT

The Large Lenslet Array Magellan Spectrograph (LLAMAS) is an NSF-funded facility-class Integral Field Unit (IFU) spectrograph under construction for the 6.5-meter Magellan Telescopes. It covers a 37"×37" solid angle with 2,400 optical fibers efficiently coupled by a double-sided microlens-array, producing R = 2, 000 spectra with 0.75" spatial resolution. Its broad passband from λ = 350 - 970nm offers access to line and continuum measurements over a wide range in redshift. Light is multiplexed by the IFU into 8 compact, carbon-fiber bench mounted spectrographs utilizing VPH grisms. We employed several trades on cost-performance ratio while optimizing LLAMAS' system design including: (a) Splitting the passband between 3 fast all-refractive camera systems with modest entrance pupils, (b) limiting the fibers per unit (i.e. slit length) and building more spectrographs to leverage on production volume, and (c) using a commercial CCD camera built around a common detector (e2v 42-40) and thermoelectric + liquid cooling. To boost blue throughput and achieve high-quality sky subtraction the spectrograph cluster is mounted next to the focal plane on a folded Cassegrain port with gravity-invariant support. This also allows the instrument to deploy quickly, and be fully accessible within 10 minutes on any night, serving as a facility unit for observing astrophysical transients. A sub-sized IFU (169 fibers), mounted in a full-sized front end package with a single spectrograph (2 cameras) was delivered to Magellan in March 2020. We present as-measured laboratory performance from this prototype, though on-sky commissioning was unfortunately cancelled because of the COVID-19 pandemic. This contribution therefore focuses on subsequent design evolution and status of the full facility instrument. © 2020 SPIE

SELECTION OF CITATIONS
SEARCH DETAIL